

REPUBLIQUE DU NIGER MINISTERE DU PETROLE

NIGER

Nouveau pays pétrolier emergent

Introduction

Pays de l'Afrique de l'Ouest, le Niger a une superficie de 1.267.000 km² pour une population d'environ 22 millions d'habitants. Il est limité au Nord par l'Algérie et la Libye, à l'Est par le Tchad, au Sud par le Bénin et le Nigéria et à l'Ouest par le Mali et le Burkina Faso

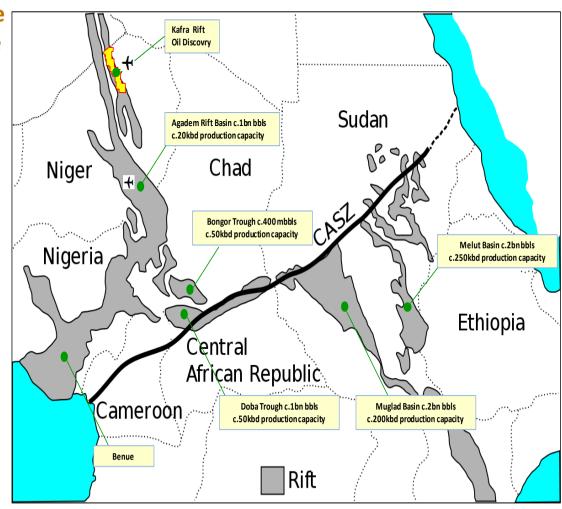
La recherche pétrolière au Niger a débuté depuis les années 1950. Cependant, c'est à compter de 2008, avec l'attribution de l'autorisation exclusive de recherche sur le bloc Agadem à la société nationale chinoise de pétrole CNPC, que les activités de recherche se sont intensifiées. Beaucoup de découvertes ont été réalisées et le Niger est devenu un pays producteur du pétrole depuis novembre 2011.

Principaux atouts du secteur pétrolier du Niger

Une nouvelle région pétrolière très prometteuse

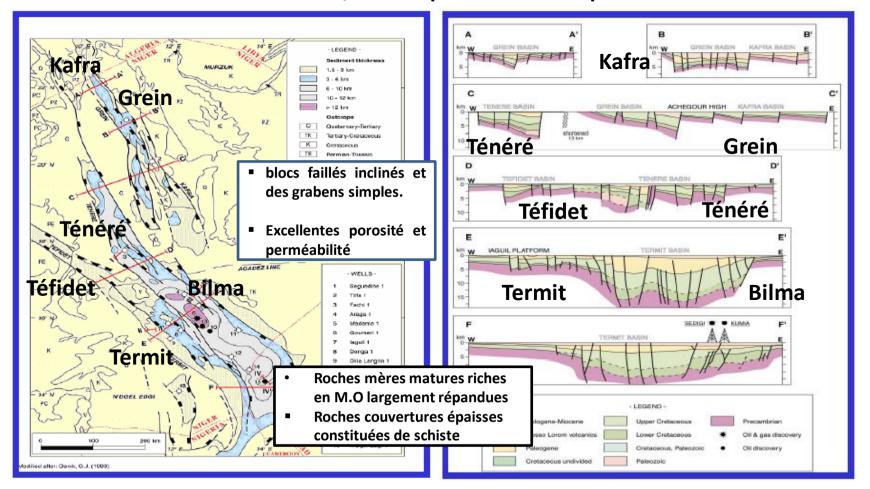
Un nouveau code pétrolier attractif sur les plans fiscal et douanier;

- Plus d'un milliard de barils de réserves 2P récupérables découvertes au cours des 10 dernières années
- 24 milliards de m3 de gaz
- Une raffinerie opérationnelle d'une capacité de 20000 bbl/jour
- Un pipeline long de 462 km operationel
- Un pipeline export d'une capacité maximale de 180 000 bbl/jour en cours de construction pour être opérationnel en 2021
- Ûn coût d'Exploration, de Development et de Production très raisonnable: \$17/bbl
- 37 blocs pétroliers à fort potientiel disponibles

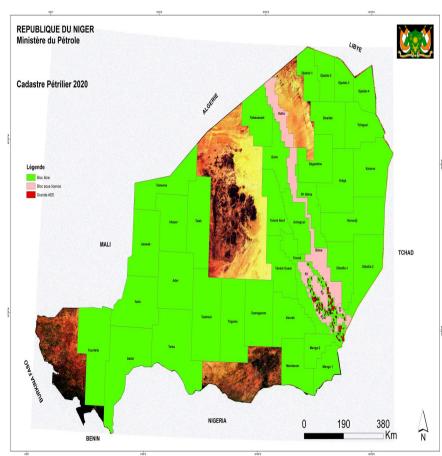


Contexte Géologique Regional

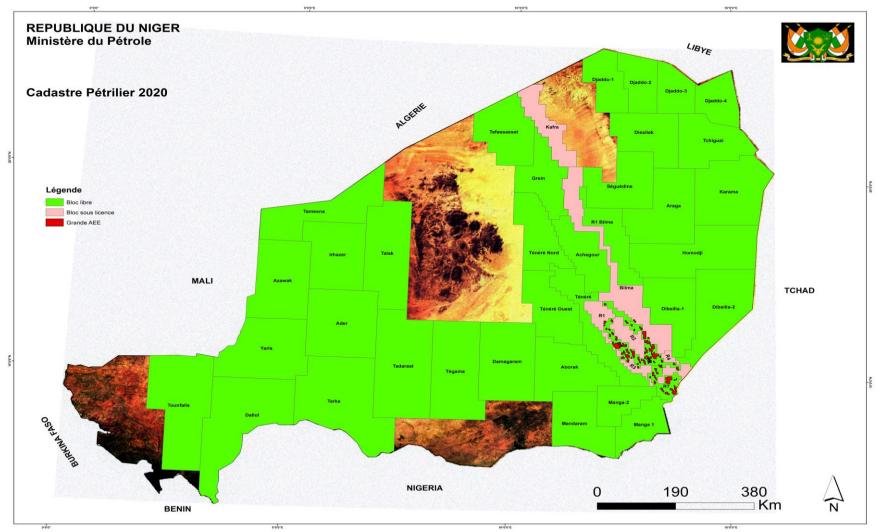
Une zone sous-explorée du système des grabens du Crétacé - Paléogène


- Plusieurs milliards de bbl découverts en Afrique dans des bassins similaires (Soudan, Tchad, Niger)
- Au Niger, seuls 4 blocs ont fait l'objet de travaux d'exploration importants:
 - 3 dans la partie sud
 - 1 dans la partie nord

Aperçu géologique des grabens du Niger


Les bassins de l'Est du Niger font partie du système de rift ouest-africain rempli de sédiments du Crétacé au Tertiaire, dont l'épaisseur atteint parfois 12 000 m.

Cadastre Pétrolier: blocs sous licence


N°	Bloc	Superficie (km2)	Opératrice	Licence
1	AGADEM	2 961	CNPCNP +OPIC	Prod.
	AGADLIVI	2 901	TOPIC	Piou.
2	KAFRA	11 632	SIPEX	Explo.
3	BILMA	20 864	CNPCIN	Explo.
4	R1	3 993	SAVANNAH	Explo.
5	R2	4 416	SAVANNAH	Explo.
6	R3	2 261	SAVANNAH	Explo.
7	R4	2 986	SAVANNAH	Explo.

Blocs ouverts à l'Exploration

Blocs ouverts à l'Exploration

N°	Noms blocs	Superficie (Km²)	N°	Noms blocs
1	DAMAGARAM	29790	15	AZAWAK
2	TAFASSASSET	22020	16	IRHAZER
3	DJADO 2	12920	17	DJADO 1
4	TCHIGAI	21230	18	TALAK
5	DISSILAK	20030	19	TEGAMA
6	KARAMA	25620	20	TADARAST
7	ARAGA	22610	21	ACHEGOUR
8	SEGUEDINE	20450	22	DJADO 3
9	HOMODJI	20840	23	DJADO 4
10	DIBELLA 2	28710	24	TAMESNA
11	TARKA	43700	25	MANGA 1
12	TOUNFALIS	38350	26	TENERE OUES
13	YARIS	31200	27	MANGA 2
14	ADER	31600	28	ABORAK

	Superficie	
	(Km²)	
	28400	
	25630	
	14200	
	30380	
	32800	
	39740	
	15870	
	11230	
	12170	
	25750	
	12900	
ST	21920	
	11490	

24640

N°	Noms blocs	Superficie (Km²)
29	GREIN	16970
30	MANDARAM	21050
31	DALOL	41080
32	DIBELA 1	20590
33	TENERE NORD	18382
34	TENERE	17500
35	R1 BILMA	14290
36	R5	2147
37	R6	4109
38	R7	3497

Système Pétrolier du Niger

1. Les roches réservoirs

a. Le réservoir de sokor (Paléocène-Eocène)

• Réservoir multi-couches divisé en plusieurs unités (E1, E2, E3, E4 et E5), composé de grès fins à grossiers avec une grande proportion d'argile: gisements fluvio-deltaïques à lacustres. Ces réservoirs constituent le principal objectif d'exploration du Rift céno-mésozoïque du système CARS occidental et au Niger. Les porosités vont jusqu'à 30%. De nombreuses découvertes de pétrole ont été réalisées.

b. Le réservoir de Madama (Maastrichtien-Paléocène)

• Ce grès massif est un excellent réservoir composé de grès de taille moyenne à grossière et constitue un empilement de canaux en tresses associés à des dépôts fluviatiles. Les épaisseurs de cette formation dépassent les 300 m.

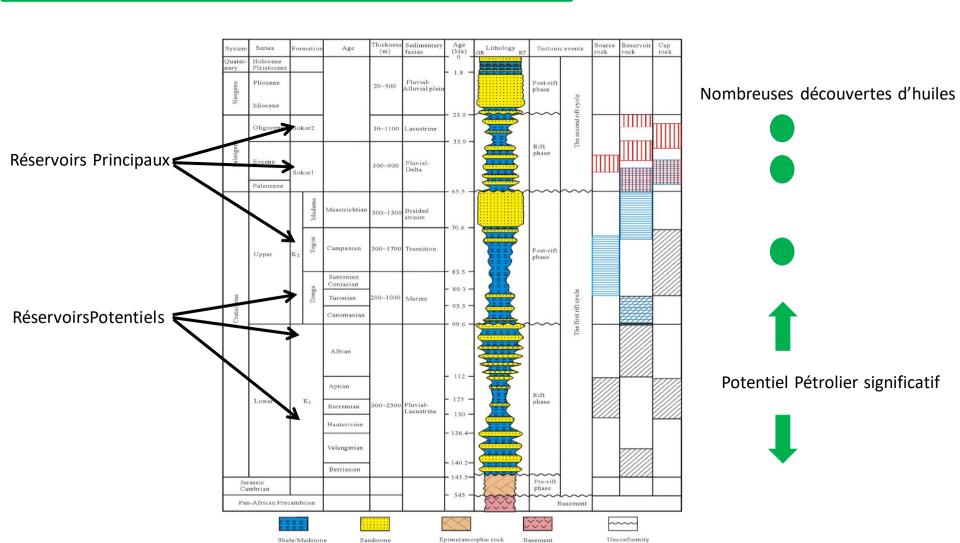
c. Réservoir de Yogou (campanien)

• Ce réservoir correspond à la zone de transition des domaines marins et continentaux avec une régression peu profonde, contenant des intercalations de grès ou de calcaire dolomitique. Au sommet du campanien, le pourcentage de grès augmente. Ces réservoirs sont représentés par des grès fins et des siltstones avec des porosités allant de 12 à 20%.

2. Les roches mères

- Les principales roches mères sont les schistes argileux du Crétacé supérieur des formations de Donga et de Yogou (Turonien-Coniacien-Santonien) d'origine marine peu profonde et, localement, les argiles lacustres continentales du Sokor (Paléogène).
- Les principales voies de migration de ces types de réservoirs sont des failles normales, comme le confirme le nombre de découvertes effectuées le long de la principale tendance de faille du creux Dinga de la faille de Termit orienté vers le Nord-Ouest du Sud-Ouest. Selon des études géochimiques et de la modélisation, ce sont principalement les roches sources du Crétacé supérieur qui ont alimenté Sokor (Eocène-Paléocène) et Madama / Yogou (Campanian Maastrichtian).

3. <u>Les roches couvertures</u>


• L'imperméabilité est assurée par les deux niveaux d'argilites: les argilites de Sokor et les argilites intra-formation dans l'intervalle des alternances de Sokor; l'étanchéité latérale est due à la juxtaposition des niveaux de réservoir contre les argilites de l'alternance de Sokor et les argilites de Sokor, lesquelles doivent être suffisamment épaisses pour éviter les fuites.

4. <u>Les styles de piègeage</u>

• Les failles profondes ont servi de drain à la migration des hydrocarbures. Le mode de piégeage est de type structural, réalisé par les ensembles de failles normales qui ont permis la structuration du bassin en style horst et half-graben.

Litho-stratigraphie des bassins pétroliers du Niger

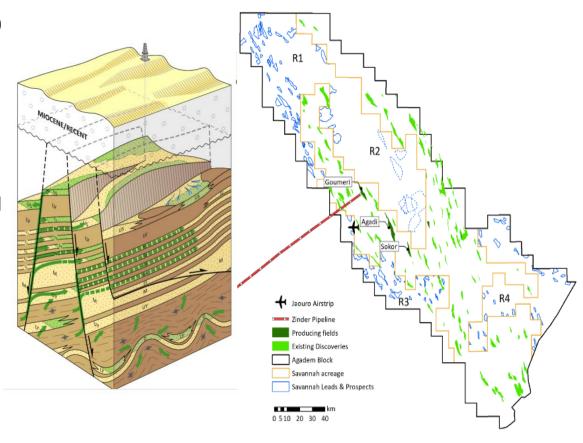
Les champs pétroliers: Cas du bassin du Termit

Superficie totale du bassin: 37000

km2

Puits d'exploration recent : 132 +

5+8 = 145


Découvertes: 112 + 5+7 = 124

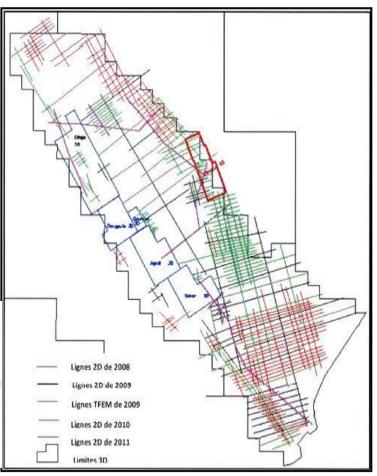
Reserves 2P d'huiles: > 1 milliard

bbl

Potentiel restant : Considérable

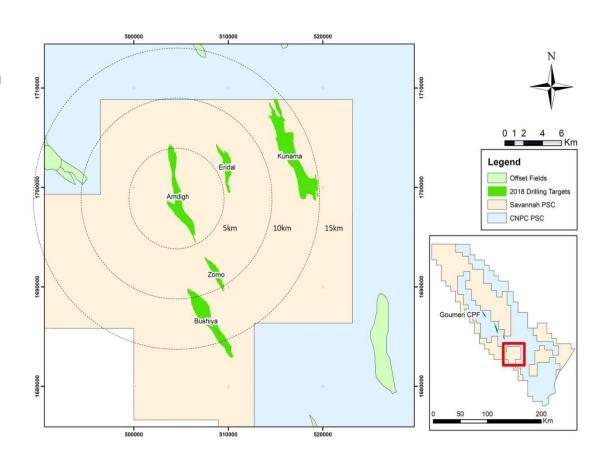
Plusieurs Leads et plays supplémentaires du crétacé plus profond



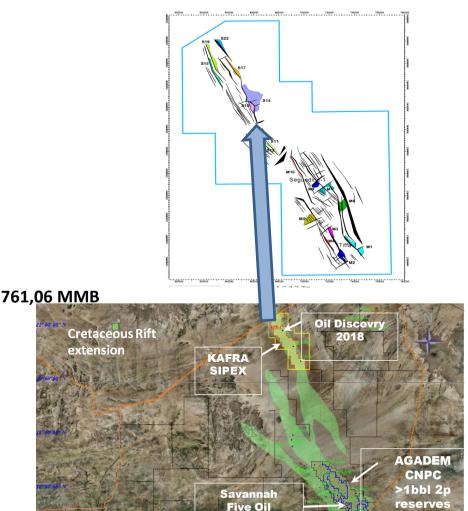

Travaux récents dans le basin de Termit (Bloc Agadem-CNPC)

Au cours des 10 dernières années, la CNPC a mis en œuvre un programme d'exploration dynamique:

- Plus de 130 puits d'exploration forés (taux de réussite supérieur à 80%);
- Travaux de sismiques 2D sur plus de 18 000 Km et 3D sur 13 000 Km²;
- 112 découvertes de pétrole avec plus d'1 milliard de réserves 2P récupérables ;
- Un pipeline de 463 km et la raffinerie de Zinder construite et mise en service ;
- Un pétrole brut léger: 30.3 °API



Travaux récents dans le basin de Termit (Bloc R3 -Savannah)

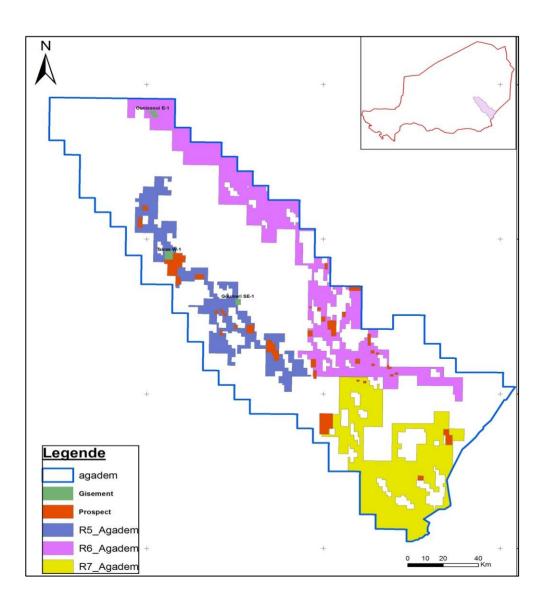

- Blocs R1, R2, R3 et R4
 accordés à Savannah sur la
 base des premiers
 abandons de la CNPC.
- Plus de 100 prospects identifiés sur la base des travaux précédents de la CNPC.
- 800 Km² de Sismique 3D
- 5 puits d'exploration = 5 « lead » découvertes
- Taux de réussite: 100%
- 50 millions de barils

Travaux récents dans le graben de Kafra (Block-SIPEX)

REPUBLIQUE L. DU NIGER

- 2228 Km de données sismiques 2D et 760,23 Km2 de données sismiques 3D
- Puits Kafra-1 foré en 2018 avec TD @ 3590m
- Découverte d'huile, DST 1500 bopd
- Stratigraphie similaire à Agadem
- Réservoirs Crétacé
- Même type de brut que celui d'Agadem
- STOOIP: plus de 386,07 millions bbls
- Huiles lourdes: 375 millions bbls
- D'importants indices de gaz en profondeur
- un deuxieme puits d'exploration de 4000 m de profondeur est en cours

Discovry

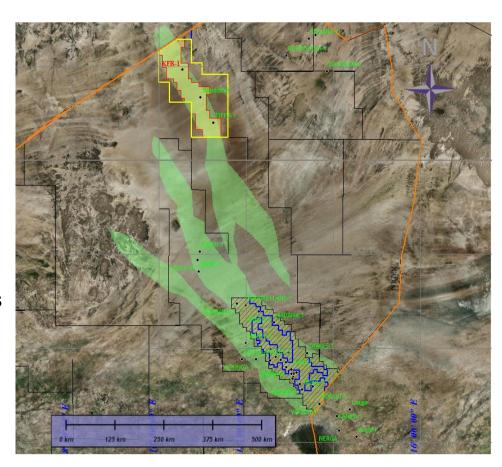

Blocs R5, R6 et R7: Prêts à être forés

En août 2017, l'autorisation exclusive de recherche du bloc Agadem arrive à son terme après 9 ans de recherche soutenue.

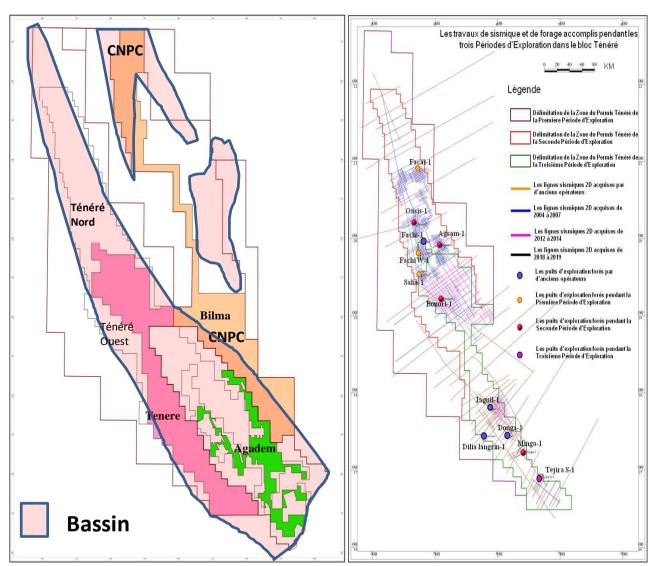
La partie rendue contient plus de 60 prospects dont les ressources sont connues.

Ces prospects sont sur les blocs R5, R6 et R7 ci-contre.

R6 et R7 : Sélection de Prospects


Zone	Prospect	Formation	Area (km²)	depth(ms)	00IP(*million BBL)	Risked 00IP(*million BBL)	Block
	Tiori E-1	E1	1.8	1340	17.09	10.25	
		E5	1.34	1770	12.72	7.63	
	Idou E-1	E1	3.12	1310	29.62	17.77	
		E5	4.1	1710	38.93	23.36	
	Tiori W-1	E1	1.00	1305	9.49	5.70	
	Idou W	E1	3.05	1330	28.95	17.34	
	laou vv	E5	6.86	1760	65.14	39.05	
	Koulele	E1	1.64	1310	15.57	9.34	
	NW1	E5	2.24	1790	21.27	12.76	
	Variala C 1	E1	2.85	1440	27.09	16.27	R6
N	Koulele S-1	E5	5.31	1830	50.45	30.24	
Ngourti 3D	Non	E1	1.98	1460	18.80	9.40	
	Ngourti N-1	E5	0.63	1870	5.98	2.99	
	Alala NW1	E1	1.42	1320	13.48	6.74	
		E5	1.51	1690	14.34	7.17	
	Alala N1	E1	1.86	1370	17.66	8.83	
	Alala E-1	E1	3.89	1360	36.90	18.49	
		E5	0.51	1700	4.87	2.44	
	Alala S-1	E1	1.43	1420	13.58	6.79	
		E5	0.67	1800	6.36	3.18	
	Alala SE-1	E1	1.81	1390	17.19	6.87	
		E5	0.35	1750	3.32	1.33	
	Bedou SE-1	E1	1.21	1580	11.49	5.74	
Fana 2D	Ngourti W-1	E1	2.08	1535	19.75	9.87	R7
Total			61.07		500.03	279.56	

La prochaine province pétrolière: Ténéré, Tefidet et Bilma

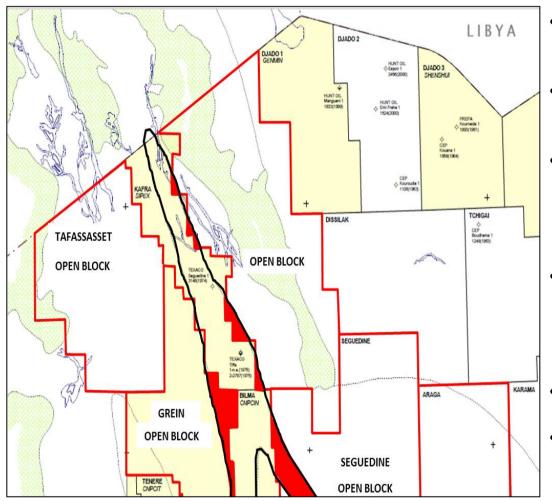

Potentiels:

- Les séquences des sections nord et sud sont très similaires à celles d'Agadem
- Malgré les activités récentes, la majorité du bassin du Tchad est relativement sous-explorée.
- La profondeur de la faille la plus profonde d'Agadem dépasse largement les 10 000 m, mais, peu de puits ont franchi les 4 000 m.
- La forte probabilité que ces sous-bassins supplémentaires contiennent de grandes ressources non découvertes.
- Les roches crétacées ont été principalement forées dans les marges peu profondes du sous-bassin
- La forte probabilité de faire des découvertes dans le crétacé inférieur

Zones rendues ouvertes à l'exploration au Centre

Périmètre rendu du Ténéré : 17 500 km 2

Périmètre rendu du Ténéré Ouest : 17 500 km 2


Périmètre rendu du Ténéré Nord : 18 382 km 2

Périmètre rendu de Bilma: 30 650 km 2

Données gravimétriemagnétismes, sismiques et de puits disponibles

Superficie ouverte à l'exploration au nord

- Une récente découverte de pétrole par SIPEX-Niger
- Les blocs adjacents dans le bassin sont ouverts
- Les données des puits forés dans cette zone ont prouvé une séquence sédimentaire épaisse de plus de 4000 m
- Des données historiques et nouvelles Données gravimétriemagnétismes, sismiques et de puits disponibles
- Le potentiel du bassin important
- Les puits forés dans cette zone présentent une coupe tertiaire et mésozoïque semblable à celle d'Agadem

Données de grande qualité

Toutes les données pétrolières sont stockées dans le Centre de Données de Niamey (CDP)

Levées sismiques:

• 12 500 km² 3D

• 49 139 km 2D

• Qualité: très bonne

Gravimétrie-

magnétisme: 78 7780

km

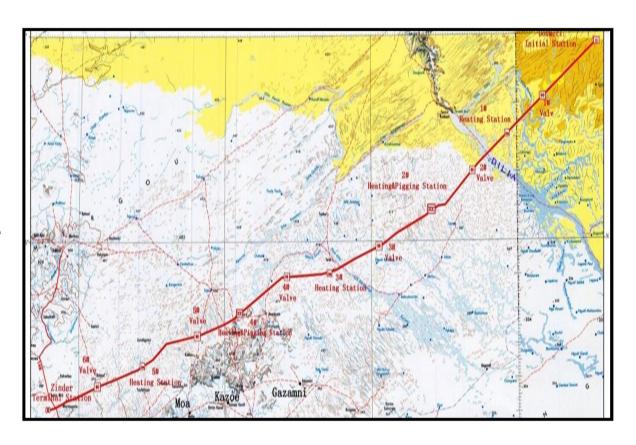
FTG:37 000 km²

 Données et rapports de puits: 261 puits

 Processus d'accès: paiement forfaitaire

Production stable à faible coût

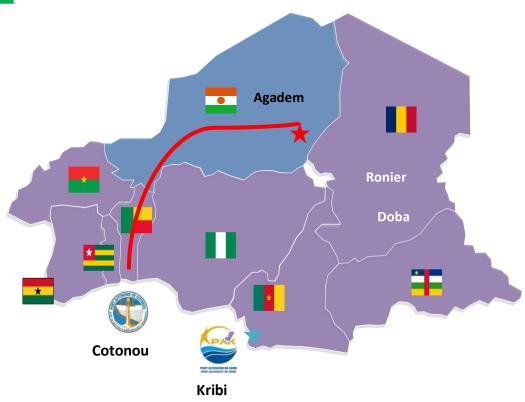
- La production d'Agadem a démarré en 2011 à partir de 3 champs: Agadi, Goumeri et Sokor
- La production journalière actuelle: 20 000 barils / jour
- Le coût du baril limité à 17
 USD, (frais d'exploration, de
 développement et de
 production compris)
- La production passera à 110 000 barils / jour à partir de 2021:



Infrastructure interne

Pipeline existant pour alimenter la raffinerie du pays

- Raffinerie: capacité de 20 000 b/j;
- Pipeline: capacité de 34 000 b / j;
- => Capacité disponible pour une petite production supplémentaire



Infrastructures d'exportation

Un pipeline d'exportation sera mis en production d'ici à la fin 2021

- La capacité maximale: 180 000 b / j (20 pouces) par rapport à une production prévue sur le plateau de 90 000 b / j
- Le prix du transport: 15USD / bbl pour les 10 premières années puis décroissant
- Tous les pipelines du pays ont un accès ouvert pour des tiers sans règles de discrimination tarifaires (sous réserve de capacité disponible)

Pipeline à construire

Environnement favorable pour l'investissement

Environnment favorable aux enterprises Pétrolières

- Régime juridique protecteur (stabilisation, arbitrage, etc.)
- Fortes présence des prestataires de service (actuellement 13 rigs et deux équipes de sismiques)
- Faibles coûts d'exploitation (17 \$ / bbl incluant l'exploration, le développement et la production)
- Durée maximale d'exploration: 8 ans (en cas de découverte significative: 10)
- Période de production: 25 ans

Régime fiscal attractif

- Redevance: 12,5%
- Cost oil 70%
- Profit oil : 40% 60% (basé sur la rentabilité du projet)
- Exonération de TVA
- Exemption des droits pendant l'exploration et les cinq premières années de production
- Exonération de la plupart des autres taxes (y compris l'impôt sur le revenu, l'impôt sur les dividendes)

Procédure d'octroi de bloc pétrolier

- Sélection de blocs: accéder au centre de données + discussion avec les techniciens du ministère
- preuve de capacité technique et financière
- Négociations du CPP (Bonus de signature et programme de travaux)
- Approbation du CPP en Conseil des ministres
- Signature du CPP
- Octroi du permis d'exploration

Maximum 3 mois

MERCI POUR VOTRE AIMABLE ATENTION

Mr MAIDAGI DAKAOU OUMAROU DIRECTEUR DE L'EXPLORATION ET DE LA PRODUCTION DES HYDROCARBURES MINISTERE DU PETROLE TELEPHONE:+227 96467225 EMAIL: omaidagi@yahoo.com